Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e24939, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317898

RESUMO

The present study explores the use of local clay from the United Arab Emirates (UAE) to prepare porous ceramic membranes (flat disk shape) for the purpose of removing toxic heavy metals from contaminated water. Four distinct ceramic membranes, crafted from locally sourced clay and incorporated with activated carbon and graphite, underwent careful and thorough preparation. The initial set of membranes was subjected to open-air sintering, resulting in the creation of mACA and mGrA membranes. Concurrently, a second set of meticulously prepared membranes underwent sintering under inert nitrogen conditions, yielding the formation of mACI and mGrI membranes, respectively. Prior to making the membranes, the clay material was characterized by thermogravimetric analysis (TGA), X-ray fluorescence (XRF), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction analysis (XRD). The clay presented the lowest weight loss compared to AC and Gr, implying that these two materials could be used as porogen agents. The X-ray fluorescence results indicated that the natural clay contained 65.5 wt% of silicon dioxide (SiO2), aluminium oxide (Al2O3), and iron (III) oxide (Fe2O3) falling within the class C category of clays according to ASTM. The FTIR analysis showed different clay regions allocated to various stretching and deformation vibrations of hydroxide, organic fraction, and (Si, Al, Fe)-O groups. The XRD analysis revealed the presence of kaolinite, illite, smectite and calcite phyllite phases in the clay mineral. The membranes were characterized using FESEM, with those containing AC (used as porogen) exhibiting large pores clearly visible on the surface, and were tested for the removal of lead (Pb2+) ions from synthetic wastewater. The removal efficiencies of the membranes were 33 %, 75.2 %, 100 % and 100 % for mACA, mACI, mGrA and mGrI respectively after 100 min operation. The wettability of the membranes was found to follow the order mACI < mACA < mGrI < mGrA, which corroborated well with water fluxes of 7, 8, 112 and 214 L h-1 m-2 recorded after 60 min duration and 1.0 bar applied pressure. The mechanisms of filtration of Pb2+ ions were adsorption for the AC-based membranes (mACA, mACI) and a combination of adsorption and size exclusion for the Gr-based membranes (mGrA, mGrI).

2.
Chemosphere ; 339: 139740, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37544521

RESUMO

Sulfate (SO42-) is a major water and environmental concern that causes severe diarrhea, death of invertebrates and plant species, and clogging of industrial pipes. In the current work, treatment of SO42- from synthetic and real groundwater having 3901 mg(SO42-)/L was investigated for the first time using Zn-Al and Mg-Al layered double oxides doped granular activated carbon (GAC/Mg-Al LDO and GAC/Zn-Al LDO). The co-precipitation method was followed to synthesize the GAC/LDO composites using an Mg or Zn to Al molar ratio of 3:1. The GAC/Mg-Al LDO possessed a higher specific surface area (323.9 m2/g) compared to GAC/Zn-Al LDO (195.1 m2/g). The GAC/Mg-Al LDO demonstrated more than 99% removal of SO42- from synthetic water, while it was 50.9% for GAC/Zn-Al LDO and less than 1% for raw GAC at an initial concentration of 50 mg/L. The GAC/Mg-Al LDO was selected for further batch experiments and modeling investigation. The equilibrium data followed the Redlich-Peterson and Langmuir models with determination coefficients of 0.943 and 0.935, respectively. The maximum Langmuir adsorption capacity was 143.5 mg/g. In the real groundwater adsorption study, the screening experiment revealed high selectivity towards SO42- with 62% removal efficiency. The optimum dosage was found to be 50 g/L with an uptake capacity of 61.5 mg/g. The kinetic data of SO42- removal from synthetic and brackish water were in excellent agreement with the pseudo-second order model, and the equilibrium was attained in 5 h. Accordingly, it can be concluded that the GAC/Mg-Al LDO is an efficient material for treating SO42- from real groundwater and can be utilized as a pretreatment unit for high sulfate water resources.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Óxidos , Carvão Vegetal , Sulfatos , Água , Óxidos de Enxofre , Adsorção , Cinética , Purificação da Água/métodos
3.
Polymers (Basel) ; 15(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38232019

RESUMO

Oil-contaminated water and industrial oily wastewater discharges have adversely affected aquatic ecosystems and human safety. Membrane separation technology offers a promising solution for effective oil-water separation. Thus, a membrane with high surface area, hydrophilic-oleophobic properties, and stability is a promising candidate. Electrospinning, a straightforward and efficient process, produces highly porous polymer-based membranes with a vast surface area and stability. The main objective of this study is to produce hydrophilic-oleophobic polyacrylonitrile (PAN) and cellulose acetate (CA) nanofibers using core-shell electrospinning. Incorporating CA into the shell of the nanofibers enhances the wettability. The core PAN polymer improves the electrospinning process and contributes to the hydrophilicity-oleophobicity of the produced nanofibers. The PAN/CA nanofibers were characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, and surface-wetting behavior. The resulting PAN/cellulose nanofibers exhibited significantly improved surface-wetting properties, demonstrating super-hydrophilicity and underwater superoleophobicity, making them a promising choice for oil-water separation. Various oils, including gasoline, diesel, toluene, xylene, and benzene, were employed in the preparation of oil-water mixture solutions. The utilization of PAN/CA nanofibers as a substrate proved to be highly efficient, confirming exceptional separation efficiency, remarkable stability, and prolonged durability. The current work introduces an innovative single-step fabrication method of composite nanofibers, specially designed for efficient oil-water separation. This technology exhibits significant promise for deployment in challenging situations, offering excellent reusability and a remarkable separation efficiency of nearly 99.9%.

4.
Polymers (Basel) ; 14(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36432990

RESUMO

This study aimed to develop polycaprolactone (PCL) electrospun membranes coated with mineral trioxide aggregate/hydroxyapatite (MTA/HA) as a potential material for dental pulp capping. Initially, the PCL membrane was prepared by an electrospinning process, which was further surface coated with MTA (labeled as PCLMTA) and HA (labeled as PCLHA). The physico-chemical characterization of the fabricated membranes was carried out using field emission scanning electron microscopy (FE-SEM)/Energy dispersive X-ray (EDX), X-ray diffraction (XRD), Raman spectroscopy, and contact angle analysis. The biocompatibility of the human dental pulp stem cells (hDPSCs) on the fabricated membranes was checked by XTT assay, and the hDPSCs adhesion and spreading were assessed by FE-SEM and confocal microscopy. The wound healing ability of hDPSCs in response to different electrospun membrane extracts was examined by scratch assay. The surface morphology analysis of the membranes by FE-SEM demonstrated a uniform nanofibrous texture with an average fiber diameter of 594 ± 124 nm for PCL, 517 ± 159 nm for PCLHA, and 490 ± 162 nm for PCLMTA. The elemental analysis of the PCLHA membrane indicated the presence of calcium and phosphorous elements related to HA, whereas the PCLMTA membrane showed the presence of calcium and silicate, related to MTA. The presence of MTA and HA in the PCL membranes was also confirmed by Raman spectroscopy. The water contact analysis demonstrated the hydrophobic nature of the membranes. The results indicated that PCL, PCLHA, and PCLMTA membranes were biocompatible, while PCLMTA exhibited better cell adhesion, spreading, and migration.

5.
Chemosphere ; 307(Pt 3): 135953, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35964727

RESUMO

In the present work, the adsorptive removal of chromium (Cr) from water by carbide-derived carbon (CDC) was investigated. The morphology and structure of the CDC were characterized by using FTIR, SEM, TEM, XRD, and N2 adsorption-desorption measurements. The effect of adsorption parameters including contact time, initial Cr concentration, temperature, initial solution pH, and CDC dosage was examined on the removal of Cr ions. The kinetic analysis revealed that the experimental data on the removal of Cr ions on CDC is well correlated with the pseudo-second order kinetic model (with R2 > 0.999), while the equilibrium data were fitted by the Redlich-Peterson isotherm model (with R2 > 0.992). The Langmuir and Sips models were also in good compliance with the equilibrium data, indicating a monolayer coverage of Cr ions onto the CDC surface with some heterogeneous active adsorption sites. The CDC revealed a notable Langmuir adsorption capacity of 159.1 mg/g for Cr ions at pH 6 and room temperature. The thermodynamic analysis illustrated that the Cr ions elimination by CDC is a feasible adsorption process and endothermic in nature. After five adsorption/desorption cycles, less than 18% reduction in the adsorption capacity was obtained indicating the stability and reusability of the CDC. Moreover, the CDC demonstrated an excellent potential in removing the Cr ions from real brackish water. According to the adsorption data, both physical and chemical adsorption processes occurred, and the adsorption was mainly controlled by electrostatic interactions with a possible reduction of hexavalent Cr to trivalent Cr at acidic conditions.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carbono/química , Cromo/análise , Concentração de Íons de Hidrogênio , Íons , Cinética , Compostos Orgânicos , Água , Poluentes Químicos da Água/análise
6.
Materials (Basel) ; 15(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35160808

RESUMO

Due to rapid technological advancements, the demand for lightweight materials with improved tribo-mechanical properties is continuously growing. The development of composite materials is one of the routes taken by researchers to meet these target properties. Aluminum (Al) is one of the most suitable materials used for developing composites for a wide range of applications because of its light weight, high conductivity, and high specific strength. In this study, aluminum hybrid nanocomposites with alumina (10 Vol% Al2O3) and varying loadings of graphene oxide (0.25, 0.5 and 1 wt% GO) were fabricated using the spark plasma sintering technique. The tribological properties of the developed hybrid composites were evaluated by conducting ball-on-disk wear tests at a normal load of 3N, with a sliding speed of 0.1 m/s, and for a sliding distance of 100 m. A 440C hardened stainless steel ball with a diameter of 6.3 mm and a hardness of 62 RC was used as a counterface. Scanning electron microscopy (SEM), elemental X-ray dispersive analysis (EDS), and optical profilometry were used to ascertain the involved wear mechanisms. The results revealed that Al-10 Vol%Vol% Al2O3-0.25 wt% GO hybrid nanocomposite showed an increase of 48% in the hardness, a reduction of 55% in the specific wear rate, and a reduction of 5% in COF compared with pure aluminum.

7.
Nanomaterials (Basel) ; 11(5)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066505

RESUMO

Aluminum matrix composites are among the most widely used metal matrix composites in several industries, such as aircraft, electronics, automobile, and aerospace, due to their high specific strength, durability, structural rigidity and high corrosion resistance. However, owing to their low hardness and wear resistance, their usage is limited in demanding applications, especially in harsh environments. In the present work, aluminum hybrid nanocomposite reinforced with alumina (Al2O3) and graphene oxide (GO) possessing enhanced mechanical and thermal properties was developed using spark plasma sintering (SPS) technique. The focus of the study was to optimize the concentration of Al2O3 and GO content in the composite to improve the mechanical and thermal properties such as hardness, compressive strength, heat flow, and thermal expansion. The nanocomposites were characterized by FESEM, EDS, XRD and Raman spectroscopy to investigate their morphology and structural properties. In the first phase, different volume percent of alumina (10%, 20%, 30%) were used as reinforcement in the aluminum matrix to obtain (Al+X% Al2O3) composite with the best mechanical/thermal properties which was found to be 10 V% of Al2O3. In the second phase, a hybrid nanocomposite was developed by reinforcing the (Al + 10 V% Al2O3) with different weight percent (0.25%, 0.5%, 1%) of GO to obtain the optimum composition with improved mechanical/thermal properties. Results revealed that the Al\10 V% Al2O3\0.25 wt.% GO hybrid nanocomposite showed the highest improvement of about 13% in hardness and 34% in compressive strength as compared to the Al\10V% Al2O3 composite. Moreover, the hybrid nanocomposite Al\10 V% Al2O3\0.25 wt.% GO also displayed the lowest thermal expansion.

8.
Sci Total Environ ; 765: 142721, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33129530

RESUMO

Reverse Osmosis (RO) is becoming increasingly popular for seawater desalination and wastewater reclamation. However, fouling of the membranes adversely impacts the overall process efficiency and economics. To date, several strategies and approaches have been used in RO plants and investigated at the laboratory-scale for their effectiveness in the control of different fouling types. Amid growing concerns and stringent regulations for the conservation of environment, there is an increasing trend to identify technologies that are effective in fouling mitigation as well as friendly to the environment. The present review elaborates on the different types of environment-friendly technologies for membrane fouling control that are currently being used or under investigation. It commences with a brief introduction to the global water crisis and the potential of membrane-based processes in overcoming this problem. This is followed by a section on membrane fouling that briefly describes the major fouling types and their impact on the membrane performance. Section 3 discusses the predominant fouling control/prevention strategies including feedwater pretreatment, membrane and spacer surface modification and membrane cleaning. The currently employed techniques are discussed together with their drawbacks, with some light being shed on the emerging technologies that have the ability to overcome the current limitations. The penultimate section provides a detailed discussion on a variety of eco-friendly/chemical free techniques investigated to control different fouling types. These include both control and prevention strategies, for example, bioflocculation and electromagnetic fields, as well as remediation techniques such as osmotic backwashing and gas purging. In addition, quorum sensing has been specifically discussed for biofouling remediation. The promising findings from different studies are presented followed by a discussion on their drawbacks and limitations. The review concludes with a need for carrying out fundamental studies to develop better understanding of the eco-friendly processes discussed in the penultimate section and their optimization for possible integration into the RO plants.

9.
Membranes (Basel) ; 10(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233819

RESUMO

In the present work, we developed a novel method for transferring monolayer graphene onto four different commercial hydrophilic micro/ultra-filtration substrates. The developed method used electrostatic charging to maintain the contact between the graphene and the target substrate intact during the etching step through the wet transfer process. Several measurement/analysis techniques were used in order to evaluate the properties of the surfaces and to assess the quality of the transferred graphene. The techniques included water contact angle (CA), atomic force microscopy (AFM), and field emission scanning electron microscopy (FESEM). Potassium chloride (KCl) ions were used for the transport study through the developed graphene-based membranes. The results revealed that 70% rejection of KCI ions was recorded for the graphene/polyvinylidene difluoride (PVDF1) membrane, followed by 67% rejection for the graphene/polyethersulfone (PES) membrane, and 65% rejection for graphene/PVDF3 membrane. It was revealed that the smoothest substrate was the most effective in rejecting the ions. Although defects such as tears and cracks within the graphene layer were still evolving in this new transfer method, however, the use of Nylon 6,6 interfacial polymerization allowed sealing the tears and cracks within the graphene monolayer. This enhanced the KCl ions rejection of up to 85% through the defect-sealed graphene/polymer composite membranes.

10.
Membranes (Basel) ; 10(10)2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080825

RESUMO

The adhesion enhancement of graphene oxide (GO) and reduced graphene oxide (rGO) layer in the underlying polyethersulfone (PES) microfiltration membrane is a crucial step towards developing a high-performance membrane for water purification applications. In the present study, we modified the surface of a PES microfiltration membrane with plasma treatment (PT) carried out at different times (2, 10, and 20 min). We studied the effect of PT on the adhesion, stability, and performance of the synthesized GO/rGO-PES membranes. The membranes' surface morphology and chemistry were characterized using atomic force microscopy, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy. The membrane performance was evaluated by conducting a diffusion test for potassium chloride (KCl) ions through the synthesized membranes. The results revealed that the 2 min PT enhanced the adhesion and stability of the deposited GO/rGO layer when compared to the other plasma-treated membranes. This was associated with an increase in the KCl ion rejection from ~27% to 57%. Surface morphology analysis at a high magnification was performed for the synthesized membranes before and after the diffusion test. Although the membrane's rejection was improved, the analysis revealed that the GO layers suffered from micro/nano cracks, which negatively affected the membrane's overall performance. The use of the rGO layer, however, helped in minimizing the GO cracks and enhanced the KCl ion rejection to approximately 94%. Upon increasing the number of rGO deposition cycles from three to five, the performance of the developed rGO-PES membrane was further improved, as confirmed by the increase in its ion rejection to ~99%.

11.
Nanomaterials (Basel) ; 10(5)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32353969

RESUMO

Ceramic-based nanocomposite membranes are gaining great attention in various applications, such as water treatment; gas separation; oil and gas, amid their superior fouling resistance and remarkable chemical/thermal stability. Here, we report for the first time the use of spark plasma sintering (SPS) process to fabricate a porous alumina-carbon nanotubes (Al2O3-CNT) nanocomposite membrane for water treatment. The challenge is this work is to achieve a balance between the amount of porosity, desired for a high water flux, and the membrane strength level, required to resist the applied pressure during a water flow experiment. The effect of SPS process parameters (pressure, temperature, heating rate, and holding time) on the microstructure and properties of the developed membrane was investigated and correlated. A powder mixture composed of Al2O3 and 5 wt % CNT was prepared with the addition of starch as a pore former and gum Arabic and sodium dodecyl sulfate as dispersants. The powder mixture was then sintered using SPS to produce a solid but porous nanocomposite membrane. The structure and microstructure of the developed membrane were characterized using X-ray diffraction and field emission scanning electron microscopy. The performance of the membrane was assessed in terms of porosity, permeability, and mechanical properties. Moreover, the adsorption capability of the membrane was performed by evaluating its removal efficacy for cadmium (II) from water. The microstructural analysis revealed that CNT were distributed within the alumina matrix and located mainly along the grain boundaries. The permeability and strength were highly influenced by the sintering pressure and temperature, respectively. The results indicated that the membrane sintered at a pressure of 10 MPa, temperature of 1100 °C, holding time of 5 min, and heating rate of 200 °C/min exhibited the best combination of permeability and strength. This developed membrane showed a significant removal efficiency of 97% for cadmium (II) in an aqueous solution.

12.
Materials (Basel) ; 12(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897692

RESUMO

The present study investigates the high temperature tribological performance of spark plasma sintered, nano- and micron-sized tungsten carbide (WC) bonded by 9 wt.% cobalt (Co). The composites were fabricated using a two-step procedure of mixing followed by spark plasma sintering (SPS). Ball-on-disc wear tests were conducted at a normal load of 30 N, linear speed of 0.1 m/s under dry conditions and at three different temperatures (room temperature, 300 °C and 600 °C). Field emission scanning electron microscopy (FESEM), optical profilometry and energy dispersive X-ray (EDS) spectroscopy were used to analyze the surface morphology and the wear track area. At room temperature, it was observed that the nano-sized WC composites exhibited better wear resistance than the micron-sized WC composites. The wear resistance of the nano-sized samples declined significantly relative to that of the micron-sized samples with an increase in temperature. This decline in performance was attributed to the higher surface area of nano-sized WC particles, which underwent rapid oxidation at elevated temperatures, resulting in poor wear resistance. The wear rate observed at 600 °C for the micron-sized WC composites was 75% lower than that of the nano-sized cemented carbide. Oxidative wear was observed to be the predominant wear mechanism for both cemented carbide samples at elevated temperatures.

13.
Materials (Basel) ; 12(2)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634560

RESUMO

In this article, we report the development of a polyacrylonitrile-graphene oxide-silicon dioxide (PAN-GO-SiO2) hybrid membrane for separation of oil and water from their emulsified mixture. The membrane was successfully fabricated using a one-step electrospinning process. GO and SiO2 nanofillers were added in PAN in different concentrations to determine the optimized composition for the PAN-GO-SiO2 hybrid membrane. A scanning electron microscopy (SEM) examination showed that the nanofillers were uniformly embedded in the nanofibrous structure of the electrospun hybrid membrane. The GO was mainly embedded inside the PAN nanofibers, causing knots while SiO2 nanoparticles were found embedded on the nanofiber surface, resulting in the formation of micro-nano protrusions on the fiber surface. The formation of these hierarchical structures, together with enhanced hydrophilicity due to oxygen containing groups on both SiO2 and GO, resulted in a high rejection (>99%) of oil from oil-water emulsion. Membrane performance evaluation under gravity separation tests showed that the separation flux and phase rejection was enhanced with the incorporation of nanofillers. The inclusion of nanofillers also enhanced the mechanical properties of the membrane. The best flux and phase separation performance was obtained for an optimized concentration of 7.5 wt % SiO2 and 1.5 wt % GO in PAN. The flux of separated water was enhanced from 2600 L m-2 h-1 for pristine PAN to 3151 L m-2 h-1 for PAN-GO-SiO2. The hybrid membrane also showed good mechanical and chemical stability, and antifouling propensity.

14.
RSC Adv ; 8(4): 1791-1802, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35542567

RESUMO

Over the last few years, nanoparticles have been used as thermal enhancement agents in many heat transfer based fluids to improve the thermal conductivity of the fluids. Recently, many experiments have been carried out to prepare different types of nanofluids (NFs) showing a tremendous increase in thermal conductivity of the base fluids with the addition of a small amount of nanoparticles. However, little experimental work has been proposed to calculate the flow behaviour and heat transfer of nanofluids and the exact mechanism for the increase in effective thermal conductivity in heat exchangers. This study mainly focuses on the development of nanomaterial composites by incorporating copper oxide nanoparticles (CuO) onto the surfaces of carbon nanotubes (CNTs). The CNT-CuO nanocomposite was used to prepare water-based heat transfer NFs. The morphological surfaces and loading contents of the CNT-CuO nanocomposite were characterized using field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) while the physical and thermal properties of the water-based nanofluids were characterized using differential scanning calorimetry (DSC), the Mathis TCi system and a viscosity meter for measuring the heat capacity, thermal conductivity and viscosity of the synthesized NFs, respectively. The heat transfer and the pressure drop studies of the NFs were conducted by a horizontal steel tube counter-flow heat exchanger under turbulent flow conditions. The experimental results showed that the developed NFs with different concentrations of modified CNTs (0.01, 0.05 and 0.1 wt%) have yielded a significant increase in specific heat capacity (102% higher than pure water) and thermal conductivity (26% higher than pure water) even at low concentration. The results also revealed that the heat rate of the NF was higher than that of the base liquid (water) and increased with increasing the concentration of nanoparticles. Furthermore, no significant effect of the nanoparticles on the pressure drop of the system was observed.

15.
Nanotechnology ; 28(50): 505703, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29091586

RESUMO

The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

16.
ACS Nano ; 11(10): 10042-10052, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28994572

RESUMO

Nanoporous graphene has the potential to advance membrane separations by offering high selectivity with minimal resistance to flow, but how mass transport depends on the structure of pores in this atomically thin membrane is poorly understood. Here, we investigate the relationship between tunable pore creation using ion bombardment and oxygen plasma etching, the resulting pore size distributions, and the consequent water and solute transport. Through tuning of the pore creation process, we demonstrate nanofiltration membranes that reject small molecules but offer high permeance to water or monovalent ions. Theoretical multiscale modeling of transport across the membranes reveals a disproportionate contribution of large pores to osmotic water flux and diffusive solute transport and captures the observed trends in transport measurements except for the smallest pores. This work provides insights into the effects of graphene pore size distribution and support layer on transport and presents a framework for designing atomically thin membranes.

17.
Materials (Basel) ; 10(10)2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28956842

RESUMO

An aluminum oxide-impregnated carbon nanotube (CNT-Al2O3) membrane was developed via a novel approach and used in the removal of toxic metal cadmium ions, Cd(II). The membrane did not require any binder to hold the carbon nanotubes (CNTs) together. Instead, the Al2O3 particles impregnated on the surface of the CNTs were sintered together during heating at 1400 °C. Impregnated CNTs were characterized using XRD, while the CNT-Al2O3 membrane was characterized using scanning electron microscopy (SEM). Water flux, contact angle, and porosity measurements were performed on the membrane prior to the Cd(II) ion removal experiment, which was conducted in a specially devised continuous filtration system. The results demonstrated the extreme hydrophilic behavior of the developed membrane, which yielded a high water flux through the membrane. The filtration system removed 84% of the Cd(II) ions at pH 7 using CNT membrane with 10% Al2O3 loading. A maximum adsorption capacity of 54 mg/g was predicted by the Langmuir isotherm model for the CNT membrane with 10% Al2O3 loading. This high adsorption capacity indicated that adsorption was the main mechanism involved in the removal of Cd(II) ions.

18.
Materials (Basel) ; 10(1)2017 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-28772446

RESUMO

In this work, we report the transfer of graphene onto eight commercial microfiltration substrates having different pore sizes and surface characteristics. Monolayer graphene grown on copper by the chemical vapor deposition (CVD) process was transferred by the pressing method over the target substrates, followed by wet etching of copper to obtain monolayer graphene/polymer membranes. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle (CA) measurements were carried out to explore the graphene layer transferability. Three factors, namely, the substrate roughness, its pore size, and its surface wetting (degree of hydrophobicity) are found to affect the conformality and coverage of the transferred graphene monolayer on the substrate surface. A good quality graphene transfer is achieved on the substrate with the following characteristics; being hydrophobic (CA > 90°), having small pore size, and low surface roughness, with a CA to RMS (root mean square) ratio higher than 2.7°/nm.

19.
Bioinorg Chem Appl ; 2017: 7298351, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28680373

RESUMO

Fly ash (FA) is a major industrial waste generated from power stations that add extra cost for proper disposal. Recent research efforts have consequently focused on developing ways to make use of FA in environmentally sound applications. This study, therefore, investigates the potential ability of raw fly ash (RFA) and polyelectrolyte-coated fly ash (PEFA) to remove cadmium (Cd) from polluted water. Using layer-by-layer approach, functionalized fly ash was coated with 20 layers from 0.03% (v/v) of cationic poly(diallyldimethylammonium chloride) (PDADMAC) and anionic polystyrene sulfonate (PSS) solutions. Both surface morphology and chemical composition of the adsorbent (PEFA) were characterized using Field-Emission Scanning Electron Microscope (FE-SEM), X-Ray Diffraction (XRD), Fourier-Transform Infrared (FTIR), and X-Ray Fluorescence (XRF) techniques. The effects of pH, adsorbent dosage, contact time, initial contaminant concentration, and mixing rate of the adsorption of Cd were also studied in batch mode experiments. Results of the study revealed that a 4.0 g/L dosage of PEFA removed around 99% of 2.0 mg/L of Cd in 15 min at 150 rpm compared to only 27% Cd removal achieved by RFA under the same conditions. Results also showed that adsorption by PEFA followed both Langmuir and Freundlich models with correlation coefficients of 98% and 99%, respectively.

20.
Bioinorg Chem Appl ; 2017: 1624243, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28487625

RESUMO

The present study reports the use of raw, iron oxide, and aluminum oxide impregnated carbon nanotubes (CNTs) for the adsorption of hexavalent chromium (Cr(VI)) ions from aqueous solution. The raw CNTs were impregnated with 1% and 10% loadings (weight %) of iron oxide and aluminum oxide nanoparticles using wet impregnation technique. The synthesized materials were characterized using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Batch adsorption experiments were performed to assess the removal efficiency of Cr(VI) ions from water and the effects of pH, contact time, adsorbent dosage, and initial concentration of the Cr(VI) ions were investigated. Results of the study revealed that impregnated CNTs achieved significant increase in the removal efficiency of Cr(VI) ions compared to raw CNTs. In fact, both CNTs impregnated with 10% loading of iron and aluminum oxides were able to remove up to 100% of Cr(VI) ions from aqueous solution. Isotherm studies were carried out using Langmuir and Freundlich isotherm models. Adsorption kinetics of Cr(VI) ions from water was found to be well described by the pseudo-second-order model. The results suggest that metallic oxide impregnated CNTs have very good potential application in the removal of Cr(VI) ions from water resulting in better environmental protection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...